

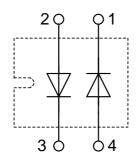
Sonic Fast Recovery Diode

 V_{RRM} 1800 V

60 A

230 ns

High Performance Fast Recovery Diode Low Loss and Soft Recovery Anti-parallel legs


Part number

DH2x60-18A

Backside: Isolated

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- · Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
 - Power dissipation within the diode
 - Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- · Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package: SOT-227B (minibloc)

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate: Copper
- internally DCB isolated Advanced power cycling

Terms Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office.

Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

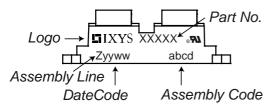
to perform joint risk and quality assessments;
the conclusion of quality agreements;

- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747 and per semiconductor unless otherwise specified

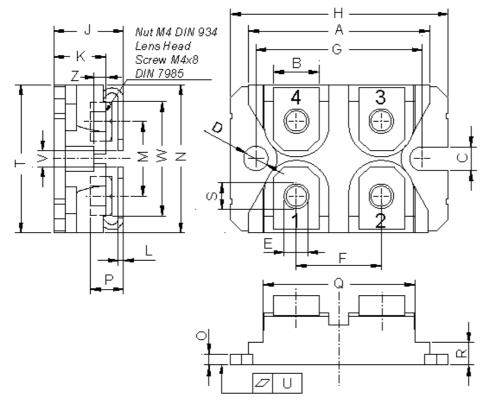
20160916c



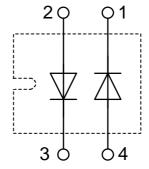
Fast Diode					Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
V _{RSM}	max. non-repetitive reverse block	epetitive reverse blocking voltage				1800	V	
V _{RRM}	max. repetitive reverse blocking v	oltage	$T_{VJ} = 25^{\circ}C$			1800	V	
I _R	reverse current, drain current	V _R = 1800 V	$T_{VJ} = 25^{\circ}C$			200	μΑ	
		$V_R = 1800 \text{ V}$	$T_{VJ} = 125$ °C			2	mΑ	
V _F	forward voltage drop	I _F = 60 A	$T_{VJ} = 25^{\circ}C$			2.01	V	
		$I_F = 120 A$				2.51	V	
		$I_F = 60 \text{ A}$	T _{VJ} = 125°C			2.02	V	
		$I_F = 120 \text{ A}$				2.71	V	
I _{FAV}	average forward current	$T_C = 55^{\circ}C$	T _{vJ} = 150°C			60	Α	
		rectangular $d = 0.5$						
V _{F0}	threshold voltage	and and affirm and a	T _{VJ} = 150°C			1.28	V	
r _F	slope resistance	s calculation only				11.1	mΩ	
R _{thJC}	thermal resistance junction to cas	e				0.6	K/W	
R _{thCH}	thermal resistance case to heatsin	nk			0.10		K/W	
P _{tot}	total power dissipation		$T_C = 25^{\circ}C$			200	W	
I _{FSM}	max. forward surge current	$t = 10 \text{ ms}$; (50 Hz), sine; $V_R = 0 \text{ V}$	$T_{VJ} = 45^{\circ}C$			700	Α	
C	junction capacitance	V _R = 1200 V f = 1 MHz	$T_{VJ} = 25^{\circ}C$		32		pF	
I _{RM}	max. reverse recovery current	\	$T_{VJ} = 25 ^{\circ}\text{C}$		60		Α	
		$I_F = 60 \text{ A}; V_R = 1200 \text{ V}$	$T_{VJ} = 100 ^{\circ}\text{C}$		70		Α	
t _{rr}	reverse recovery time	$\begin{cases} I_F = 60 \text{ A; } V_R = 1200 \text{ V} \\ -di_F /dt = 800 \text{ A/µs} \end{cases}$	$T_{VJ} = 25 ^{\circ}\text{C}$		230		ns	
)	$T_{VJ} = 100 ^{\circ}\text{C}$		350		ns	

Package SOT-227B (minibloc)			Ratings					
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					100	Α
T _{VJ}	virtual junction temperature				-40		150	°C
Top	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		150	°C
Weight						30		g
M _D	mounting torque				1.1		1.5	Nm
$\mathbf{M}_{_{T}}$	terminal torque				1.1		1.5	Nm
d _{Spp/App}	araanaga diatanaa an ayufa	age distance on surface striking distance through air		10.5	3.2			mm
d _{Spb/Apb}	creepage distance on surfa	ce striking distance through air	terminal to backside 8.6		6.8			mm
V	isolation voltage	t = 1 second	50/60 Hz, RMS; lisoL ≤ 1 mA		3000			V
.002		t = 1 minute			2500			٧

Product Marking


Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DH2x60-18A	DH2x60-18A	Tube	10	507191

Similar Part	Package	Voltage class
DH2x61-18A	SOT-227B (minibloc)	1800


Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 150 ^{\circ}\text{C}$
$I \rightarrow V_0$	R_0	Fast Diode		
V _{0 max}	threshold voltage	1.28		V
$R_{0\;max}$	slope resistance *	9.3		$m\Omega$

Outlines SOT-227B (minibloc)

Dim.	Millimeter		Inches		
DIIII.	min	max	min	max	
Α	31.50	31.88	1.240	1.255	
В	7.80	8.20	0.307	0.323	
С	4.09	4.29	0.161	0.169	
D	4.09	4.29	0.161	0.169	
Е	4.09	4.29	0.161	0.169	
F	14.91	15.11	0.587	0.595	
G	30.12	30.30	1.186	1.193	
Н	37.80	38.23	1.488	1.505	
J	11.68	12.22	0.460	0.481	
Κ	8.92	9.60	0.351	0.378	
L	0.74	0.84	0.029	0.033	
M	12.50	13.10	0.492	0.516	
N	25.15	25.42	0.990	1.001	
0	1.95	2.13	0.077	0.084	
Р	4.95	6.20	0.195	0.244	
Q	26.54	26.90	1.045	1.059	
R	3.94	4.42	0.155	0.167	
S	4.55	4.85	0.179	0.191	
Т	24.59	25.25	0.968	0.994	
U	-0.05	0.10	-0.002	0.004	
V	3.20	5.50	0.126	0.217	
W	19.81	21.08	0.780	0.830	
Z	2.50	2.70	0.098	0.106	

Fast Diode

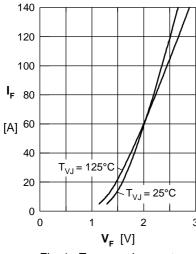


Fig. 1 Typ. rward current I_F versus V_F

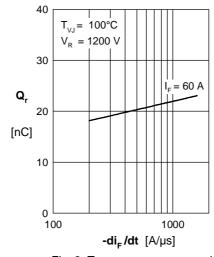


Fig. 2 Typ. reverse recovery charge Q_r versus $-di_F/dt$

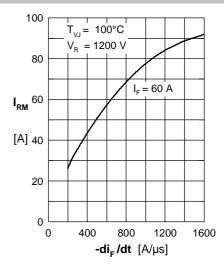


Fig. 3 Typ. peak reverse current $I_{\rm RM}$ versus $-{\rm di_F}/{\rm dt}$

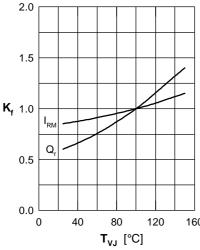
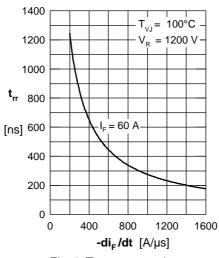



Fig. 4 Dynamic parameters $Q_{\rm r}$, $I_{\rm RM}$ versus $T_{\rm VJ}$

 $\begin{array}{ccc} \text{Fig. 5} & \text{Typ. recovery time} \\ & \text{t_{rr} versus $-di_{\text{F}}$/dt} \end{array}$

Fig. 6 Typ. peak forward voltage V_{FR} & typ. forward recovery time $t_{\rm fr}$ versus $di_{\rm F}/dt$

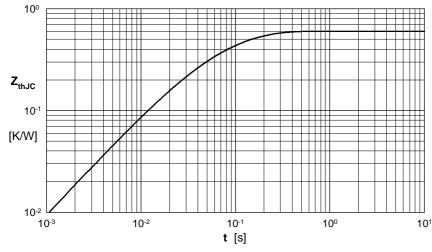


Fig. 7 Transient thermal resistance junction to case

Constants for Z_{thJC} calculation:

i	R _{thi} (K/W)	t _i (s)
1	0.212	0.0055
2	0.248	0.0092
3	0.063	0.0007
4	0.077	0.0391